Exoplanetary Atmospheres

Nikku (Madhu) Madhusudhan Institute of Astronomy, Cambridge

August 08, 2016 Exoplanets 2016 Summer School, Moletai, Lithuania

Image Credits: ESA – C. Carreau

Madhusudhan, Knutson, Fortney, and Barman, 2014, `Exoplanetary Atmospheres', Protostars and Planets VI (arXiv:1402.1169) **Observing Exoplanetary Atmospheres**

Exoplanets Conducive for Atmospheric Characterization

The Transit Method

The Transit Method

Time

Brightness

Atmospheric Spectra of Transiting Planets

Design Considerations for Transit Spectroscopy

$$\Delta_{transit} = \left(\frac{R'_p}{R_s}\right)^2 \qquad \Delta_{occultation} \approx \frac{B_{\lambda}(T_p)}{B_{\lambda}(T_s)} \left(\frac{R_p}{R_s}\right)^2 \qquad H \sim 10H_{sc}, H_{sc} = \frac{kT}{g\mu}$$

- Large Signal:
 - Large and/or hot planets
 - Small and/or cool stars
- High Precision:

- Primary Eclipse

 Measure size of planet

 Kees tar's radiation

 Constraint

 Learn about atmosphere

 Planet atmosphere
- Bright host star (but not too bright!)
- Good comparison stars (for ground-based)
- Optimal (and available) spectral bands.

What Do We Learn From Transmission Spectroscopy?

Spectral Bands available for Transit Spectroscopy

Direct Imaging

NASA, ESA, and P. Kalas (University of California, Berkeley)

Atmospheric Spectra of Directly-Imaged Planets

Design Considerations for Directly Imaged Planets Young, Giant, and Wide orbits

Marois et al. 2008,2010

The Radial Velocity (Doppler) Method

Courtesy: Xavier Dumusque

Ultra high resolution spectroscopy of RV planets

Atmospheric Characterization

Early Molecular Inferences

Tinetti et al. 2007, Nature, 448, 169

Atmospheric Spectroscopy of Exoplanets

Deming et al. 2013, Madhusudhan et al. 2014

Exoplanetary Atmosphere Models

1-D models of irradiated atmospheres with line-by-line radiative transfer

$$\frac{dP}{dr} = -\rho g$$
$$-\frac{dI_{\lambda}}{d\tau_{\lambda}} = -(1 + \frac{\xi_{\lambda}}{\kappa_{\lambda}})I_{\lambda} + \frac{j_{\lambda}}{\kappa_{\lambda}}$$
$$\left| \int_{0}^{\infty} \kappa_{\lambda} [J_{\lambda} - B_{\lambda}] d\lambda = 0 \right|$$
$$\frac{dT}{dr} = -\frac{\gamma - 1}{\gamma} \frac{\mu g}{k_{B}}$$
$$P = \frac{\rho k_{B}T}{\mu}$$

Model Parameters

- Day-night redistribution: P_n, P_1, P_2
- Extra absorber: P_{abs} , (λ_0, λ_1) , κ_e
- Composition (f_z) + clouds, etc.

Boundary Conditions

- Stellar Irradiation (Kurucz Model)
- Intrinsic Energy source

Chemical Equilibrium

$$[X] = f_z \times [X]_{solar}$$

$$\frac{G(T)}{RT} = \sum_{i=1}^{m} \left\{ n_{\phi i} \left[\frac{\Delta G_{\phi i}(T)}{RT} + \ln P + \ln \left(\frac{n_{\phi i}}{N} \right) \right] \right\}_{\phi=1}$$

$$+ \frac{1}{RT} \sum_{\phi=2}^{s+1} [n_{\phi i} \Delta G_{\phi i}(T)]_{i=1}$$

$$\sum_{i=1}^{m} [v_{\phi i j} n_{\phi i}]_{\phi=1} + \sum_{\phi=2}^{s+1} [v_{\phi i j} n_{\phi i}]_{i=1} = b_j \text{ for } j = 1 \rightarrow k$$

$$B_{CO} = A_C + A_O + \frac{P_{H_2}^2}{2K_1(T)} - \sqrt{\left[A_C + A_O + \frac{P_{H_2}^2}{2K_1(T)} \right]^2 - 4A_C A_O}$$

Caveats

- Parameters
 Chemical equilibrium and compositions
- Computation time
- Artificial sources and sinks

Seager & Sasselov 1998, Sudarsky et al. 2003 Fortney et al. 2006, Burrows et al. 2007

Atmospheric Retrieval

Steady state : $\{\rho, P, T, \tau | r, z\}$

 $\begin{aligned} \frac{dP}{dr} &= -\rho g \\ -\frac{dI_{\lambda}}{d\tau_{\lambda}} &= -I_{\lambda} + B_{\lambda} \\ \begin{vmatrix} P_0 < P < P_1 : & P = P_0 e^{\alpha_1 (T-T_0)^{\beta_1}} \\ P_1 < P < P_3 : & P = P_2 e^{\alpha_2 (T-T_2)^{\beta_2}} \\ P > P_3 : & T = T_3 \end{vmatrix} \\ P &= \frac{\rho k_B T}{\mu} \end{aligned}$

Parameters

- $T_0, P_1, P_2, P_3, \alpha_1, \alpha_2$
- $f_i: \{i = H_2O, CO, CH_4, CO_2\}$
- clouds, etc.

Boundary Conditions

Global Energy Balance (Kurucz Model)
Intrinsic Energy source (negligible)

Perturbations to Chemical Equilibrium

$$\begin{split} [B_i] &= f_i \times [B_i]_{solar} \\ B_{\rm CO} &= A_{\rm C} + A_{\rm O} + \frac{P_{\rm H_2}^2}{2K_1(T)} - \sqrt{\left[A_{\rm C} + A_{\rm O} + \frac{P_{\rm H_2}^2}{2K_1(T)}\right]^2 - 4A_{\rm C}A_{\rm O}} \\ B_{\rm CH_4} &= 2A_{\rm C} - B_{\rm CO} \qquad B_{\rm H_2 O} = 2A_{\rm O} - B_{\rm CO} \\ K_1(T) &= \exp\left[(a_1/T + b_1 + c_1T + d_1T^2 + e_1T^3)/RT\right] \\ B_{\rm N_2} &= A_{\rm N} + \frac{P_{\rm H_2}^2}{8K_2(T)} - \sqrt{\left[A_{\rm N} + \frac{P_{\rm H_2}^2}{8K_2(T)}\right]^2 - A_{\rm N}^2} \qquad B_{\rm NH_3} = 2(A_{\rm N} - B_{\rm N_2}) \end{split}$$

Features

- Computationally fast (can explore parameter space)
- Can explore non-equilibrium concentrations
- Day-night energy redistribution as output

Madhusudhan & Seager 2009; Madhusudhan et al. 2011 Also see Lee et al. 2012, Line et al. 2012, Benneke et al. 2012

P-T structure of Irradiated Atmospheres

Two stream gray model (Guillot 2010)

Gray atmosphere Low optical depth limit

$$T(\tau) = T_{\text{eff}} \left[\frac{3\tau}{4} + \frac{1}{2} \right]^{1/4}$$

Diffusion approximation Large optical depth limit

$$F = -\frac{16}{3} \frac{\sigma T^3}{\kappa \rho} \frac{dT}{dz} = \frac{16\sigma T^3}{3} \frac{dT}{d\tau}$$

$$T^{4} = \frac{3T_{\text{int}}^{4}}{4} \left[\frac{2}{3} + \tau \right] + \frac{3T_{\text{irr}}^{4}}{4} f \left[\frac{2}{3} + \frac{1}{\gamma\sqrt{3}} + \left(\frac{\gamma}{\sqrt{3}} - \frac{1}{\gamma\sqrt{3}} \right) e^{-\gamma\tau\sqrt{3}} \right]$$

Atmospheric Retrieval for Exoplanets

First measurement of atmospheric C/O in a giant planet

Key Molecular Constraints

- $H_2O/H_2 \le 6 \times 10^{-6}$
- $CH_4 / H_2 \ge 8 \times 10^{-6}$

$C/O \ge 1$

Adapted from Madhusudhan et al. 2011, Nature, 469, 64

Data from Lopez-Morales et al. 2010; Croll et al. 2010; Campo et al. 2011 But cf Crossfield et al. 2012, Cowan et al. 2012, Swain et al. 2012, Stevenson et al. 2014

New Advances with HST Transit Spectroscopy

(HST WFC3 Large pilot program: 115 HST Orbits, ~10 planets, PI: Drake Deming)

Hubble Telescope

Madhusudhan et al. 2014a

A Hot Jupiter in High Definition

K. B. Stevenson (2014)

Multi-visit 'Deep' HST Observations

(HST WFC3 Treasury program: 150 HST Orbits, 4 planets, PI: Jacob Bean)

61 HST Orbits, 6 Transits, 5 Occultations3 full planetary orbits

Stevenson et al. 2014, Nature

H₂O in the atmosphere of WASP-43b

Kriedberg et al. 2014, ApJ

First Detection of H₂O in an Exo-Neptune

Transmission Spectrum of HAT-P-11b

GJ 436b

Fraine et al. 2014, Nature

Spectra of Super-Earths

Kreidberg et al. 2014

60 HST orbits

Clouds in the super-Earth GJ 1214b (T \approx 550 K)

 $M_p = 6.55 \pm 0.98 M_E$ $R_p = 2.678 \pm 0.13 R_E$ $T_{eq} = 400 - 550 K$

Key Merit: Orbits an M Dwarf (M = $0.16 M_s$, R = $0.2 R_s$)

Future Observational Facilities

The James Webb Space Telescope

The Future from Ground: European – Extremely Large Telescope

JWST: NIRSpec and MIRI (0.6-24 μm), R~3000
 E-ELT: METIS (2.9-5.3 μm) R -> 10⁵ + N-band

Atmospheric abundances in Jupiter

Owen et al 1999; Bolton et al. 2010

H₂O abundance is not known for Jupiter

Atmospheric Theory

Theory of Exoplanetary Atmospheres

- Equilibrium and non-Equilbrium chemistry (Burrows & Sharp 1999; Lodders & Fegley 2002; Moses et al. 2011)
- Temperature structures in irradiated atmospheres (Hansen et al. 2008; Spiegel et al. 2009; Guillot et al. 2010; Heng et al. 2011)
- Clouds, hazes, condensates (Helling et al. 2008; Lecavelier des Etangs 2008; Marley et al. 2013; Morley et al. 2013)
- Atmospheric dynamics (Cho et al. 2008; Showman et al. 2008,2009; Heng et al. 2011; Rauscher & Menou 2012)
- Exospheres and atmospheric escape (Vidal Madjar et al. 2003; Murray-Clay et al. 2009; Koskinen et al. 2012)
- Statistical retrieval codes (Madhusudhan & Seager 2009; Madhusudhan et al. 2011; Line et al. 2012; Lee et al. 2012; Benneke et al. 2012)
- Carbon-rich atmospheres (Madhusudhan et al. 2011; Madhusudhan 2012)
- Terrestrial-size exoplanets (Kaltenegger et al. 2011; Schaffer et al. 2011)
- High-Temperature opacity linelists (Rothman et al. 2005,2008; Freedman et al. 2008; Tennyson & Yurchenko 2012; ExoMol Project) – Most important inputs!

1. Theory of Temperature Profiles and Thermal Inversions

Some Context

Earth's Atmosphere: U. S. Standard Atmosphere

Stratosphere caused by Ozone

Typical model temperature profiles of highly irradiated planets

Theory of Thermal inversions in hot Jupiters (The TiO/VO Hypothesis)

TiO and VO can be very strong absorbers of incident stellar irradiation in the visible high in the atmospheres of hot Jupiters, and can hence cause thermal inversions.

Thermal inversions in hot Jupiters **Classification of hot Jupiter atmospheres**

But, TiO and VO may be depleted due to gravitational settling and condensation

Spiegel et al. 2009, ApJ, 699, 1487

0.05 AU XO-₺ ₼D189733 TrES-10-HAT-P-3 Ö 0.06 AU. 0.07 AU OGLE-TR-11 Q 0.08 AU **No Inversion** 0.09 AU 156 0.10 AU 1000 10000 Planet Gravity (cm s⁻²) Hubeny et al. 2003 Fortney et al. 2008, ApJ, 678, 1419

HD149026

HAT-P-5

JrES-2

TrES-3

↔0-

0.015 AU

from Sun

0.02 AU

0.025 AU

0.03 AU

HD147506

Classifications of hot Jupiters

Machalek et al. 2008; Fressin et al. 2010; Deming et al. 2010; Anderson et al. 2012; Blecic et al. 2013

Classifications of hot Jupiters

TiO and VO can be 100x lower for C/O ≥ 1. Madhusudhan et al. 2011, ApJ, 743, 191

2-D classification scheme with C/O ratio as second dimension

Madhusudhan 2012, ApJ, 758, 36

No Thermal Inversion in HD 209458b

Diamond-Lowe et al. 2014

First Spectroscopic Evidence for a Thermal Inversion

Haynes et al. 2015

2. Theory of Atmospheric Chemistry

Chemistry in H₂-rich Atmospheres (Molecular mixing ratios assuming chemical equilibrium)

10-2
10 ⁻³
10-4
10 ⁻⁵
10 ⁻⁶
10 ⁻⁷
10 ⁻⁸
10 ⁻⁹
10 ⁻¹⁰

Chemistry in H₂-rich Atmospheres (Molecular mixing ratios assuming chemical equilibrium)

10-2
10 ⁻³
10-4
10 ⁻⁵
10 ⁻⁶
10-7
10 ⁻⁸
10 ⁻⁹
10 ⁻¹⁰

Chemistry in H₂-rich Atmospheres (Molecular mixing ratios assuming chemical equilibrium)

Influence of C/O on Atmospheric Chemistry

Influence of C/O on Atmospheric Chemistry

Madhusudhan 2012

C/O Ratios in Hot Jupiter Atmospheres

Madhusudhan 2012, ApJ, 758, 36

High-precision H₂O Measurements

Madhusudhan et al. 2014a

What is causing the low H₂O abundances in hot Jupiters?

What is causing the Low H₂O Abundances?

Clouds/Hazes?

Low O/H?

3. Clouds and Hazes

Hazes and Clouds in hot Jupiter Atmospheres

F. Pont et al. 2008, MNRAS, 385, 109 D. K. Sing et al. 2011, MNRAS, 416, 1443

Modeling and Theory: Lecavelier Des Etangs et al. 2008, A&A, 481, L83 Helling et al. 2008, A&A, 485, 547 Other results indicating high geometric albedos for some hot Jupiters using Kepler: Kepler-7b (Demory et al. 2011, ApJ, 735, 12) HAT-7b (Christiansen et al. 2010, ApJ, 710, 97)

Clouds/Hazes

3000

Sing et al. 2016, Nature

4. Signatures of Planet Formation in Atmospheric Abundances

Signatures of Planet Formation

Image Credits: NASA

Constraints on Formation Conditions

Mousis et al. 2009; Madhusudhan et al. 2011b

Other recent studies:

Moses et al. 2013 Ali-Dib et al. 2014

Marboeuf et al. 2014a,b

Madhusudhan et al. 2014b

Chemical Constraints on hot Jupiter Migration

Chemical Constraints on hot Jupiter Migration

Madhusudhan et al. 2014b

5. Habitable Exoplanets and Biosignatures

Exoplanetary Habitability

Image credits: NASA Kepler Team

Quintana et al. 2014

Trappist-1abc

What is a Biosignature?

300

250

200

Characteristics of a biosignature gas

- Primary metabolic byproduct
- Abundant enough to be detectable
- Strong spectral signature
- No false positives

Telluric Biosignatures: N_2O , O_2 (O_3)

Model Spectra of Habitable Super-Earths

н. - н

H. Atmospheres

80 100

H.O

5. The Future of Exoplanet Science

The James Webb Space Telescope

f atmospheres a The future from ground E-ELT, GMT, TMT

Madhusudhan, Knutson, Fortney, and Barman, 2014, `Exoplanetary Atmospheres', Protostars and Planets VI